Constructing pairing-friendly hyperelliptic curves using Weil restriction

نویسندگان

  • David Mandell Freeman
  • Takakazu Satoh
چکیده

A pairing-friendly curve is a curve over a finite field whose Jacobian has small embedding degree with respect to a large prime-order subgroup. In this paper we construct pairing-friendly genus 2 curves over finite fields Fq whose Jacobians are ordinary and simple, but not absolutely simple. We show that constructing such curves is equivalent to constructing elliptic curves over Fq that become pairing-friendly over a finite extension of Fq . Our main proof technique is Weil restriction of elliptic curves. We describe adaptations of the Cocks-Pinch and Brezing-Weng methods that produce genus 2 curves with the desired properties. Our examples include a parametric family of genus 2 curves whose Jacobians have the smallest recorded ρ-value for simple, nonsupersingular abelian surfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating More Kawazoe-Takahashi Genus 2 Pairing-Friendly Hyperelliptic Curves

Constructing pairing-friendly hyperelliptic curves with small ρ-values is one of challenges for practicability of pairing-friendly hyperelliptic curves. In this paper, we describe a method that extends the Kawazoe-Takahashi method of generating families of genus 2 ordinary pairing-friendly hyperelliptic curves by parameterizing the parameters as polynomials. With this approach we construct genu...

متن کامل

Genus 2 Hyperelliptic Curve Families with Explicit Jacobian Order Evaluation and Pairing-Friendly Constructions

The use of elliptic and hyperelliptic curves in cryptography relies on the ability to compute the Jacobian order of a given curve. Recently, Satoh proposed a probabilistic polynomial time algorithm to test whether the Jacobian – over a finite field Fq – of a hyperelliptic curve of the form Y 2 = X + aX + bX (with a, b ∈ Fq) has a large prime factor. His approach is to obtain candidates for the ...

متن کامل

On a Relation between the Ate Pairing and the Weil Pairing for Supersingular Elliptic Curves

The hyperelliptic curve Ate pairing provides an efficient way to compute a bilinear pairing on the Jacobian variety of a hyperelliptic curve. We prove that, for supersingular elliptic curves with embedding degree two, square of the Ate pairing is nothing but the Weil pairing. Using the formula, we develop an X -coordinate only pairing inversion method. However, the algorithm is still infeasible...

متن کامل

Improved Weil and Tate Pairings for Elliptic and Hyperelliptic Curves

We present algorithms for computing the squared Weil and Tate pairings on elliptic curves and the squared Tate pairing on hyperelliptic curves. The squared pairings introduced in this paper have the advantage that our algorithms for evaluating them are deterministic and do not depend on a random choice of points. Our algorithm to evaluate the squared Weil pairing is about 20% more efficient tha...

متن کامل

Pairing-Friendly Hyperelliptic Curves with Ordinary Jacobians of Type y2=x5ax

An explicit construction of pairing-friendly hyperelliptic curves with ordinary Jacobians was firstly given by D. Freeman. In this paper, we give other explicit constructions of pairing-friendly hyperelliptic curves with ordinary Jacobians based on the closed formulae for the order of the Jacobian of a hyperelliptic curve of type y = x + ax. We present two methods in this paper. One is an analo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009